Nonuniform Sampling and Recovery of Multidimensional Bandlimited Functions by Gaussian Radial-basis Functions

نویسنده

  • N. SIVAKUMAR
چکیده

Let (xn) ⊂ R d be a uniformly separated sequence which forms a Fourier frame for PWB2 , the space of square-integrable functions on R d whose Fourier transforms vanish outside the Euclidean unit ball B2. Given λ > 0 and f ∈ PWB2 , there is a unique sequence (aj) in l2 such that the function Iλ(f)(x) := X aje −λ‖x−xj‖ 2 2 , x∈R d , is continuous and square integrable on R, and satisfies the interpolatory conditions Iλ(f)(xn) = f(xn) for every n. It is shown that Iλ(f) converges to f in L2(R ), and also uniformly on R, as λ → 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

RBF-Chebychev direct method for solving variational problems

This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...

متن کامل

Sampling Expansion of Bandlimited Functions of Polynomial Growth on the Real Line

For a bandlimited function with polynomial growth on the real line, we derive a nonuniform sampling expansion using a special bandlimited function which has polynomial decay on the real line. The series converges uniformly on any compact subsets of the real line.

متن کامل

Approximation Properties of Sobolev Splines and the Construction of Compactly Supported Equivalents

In this paper, we construct compactly supported radial basis functions that satisfy optimal approximation properties. Error estimates are determined by relating these basis functions to the class of Sobolev splines. Furthermore, we derive new rates for approximation by linear combinations of nonuniform translates of the Sobolev splines. Our results extend previous work as we obtain rates for ba...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009