Nonuniform Sampling and Recovery of Multidimensional Bandlimited Functions by Gaussian Radial-basis Functions
نویسنده
چکیده
Let (xn) ⊂ R d be a uniformly separated sequence which forms a Fourier frame for PWB2 , the space of square-integrable functions on R d whose Fourier transforms vanish outside the Euclidean unit ball B2. Given λ > 0 and f ∈ PWB2 , there is a unique sequence (aj) in l2 such that the function Iλ(f)(x) := X aje −λ‖x−xj‖ 2 2 , x∈R d , is continuous and square integrable on R, and satisfies the interpolatory conditions Iλ(f)(xn) = f(xn) for every n. It is shown that Iλ(f) converges to f in L2(R ), and also uniformly on R, as λ → 0.
منابع مشابه
Stable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملRBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملSampling Expansion of Bandlimited Functions of Polynomial Growth on the Real Line
For a bandlimited function with polynomial growth on the real line, we derive a nonuniform sampling expansion using a special bandlimited function which has polynomial decay on the real line. The series converges uniformly on any compact subsets of the real line.
متن کاملApproximation Properties of Sobolev Splines and the Construction of Compactly Supported Equivalents
In this paper, we construct compactly supported radial basis functions that satisfy optimal approximation properties. Error estimates are determined by relating these basis functions to the class of Sobolev splines. Furthermore, we derive new rates for approximation by linear combinations of nonuniform translates of the Sobolev splines. Our results extend previous work as we obtain rates for ba...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کامل